Environmental Engineering

5. Duct design

Bachelor degree course
Vladimír Zmrhal

Laminar and turbulent flows

laminar flow

turbulent flow

Laminar and turbulent flows

Reynolds number
$\operatorname{Re}=\frac{w d}{v} \quad>$ the ratio of inertial forces to viscous
In duct where d is diameter:
$>$ laminar flow $\quad R e \leq 2300$
$>$ transitional flow $2300<R e<10000$
$>$ fully turbulent flow $R e>10000$
$v_{\text {air }}$.. kinematic viscosity $\left[\mathrm{m}^{2} / \mathrm{s}\right]=14.5 \times 10^{-6}\left[\mathrm{~m}^{2} / \mathrm{s}\right]$
...of air

Laminar and turbulent flows

Flow characteristics
$\frac{w}{w_{\max }}=\left(1-\frac{y}{r}\right)^{1 / n}$
$V=w_{s} A$
$w_{s}=\frac{1}{\pi r^{2}} \int_{s} w d A$
$W_{s}=\frac{1}{\pi r^{2}} \int_{s} W_{\max }\left(1-\frac{y}{r}\right)^{1 / n} 2 \pi y d y$

$$
\frac{W_{s}}{W_{\max }}=0.817
$$

Pressure losses

Bernoulli equation
$p_{s 1}+h_{1} \rho g+\frac{\rho}{2} w_{1}^{2}=p_{s 2}+h_{2} \rho g+\frac{\rho}{2} w_{2}^{2}+\Delta p$
Pressures in the duct
$p=p_{s}+p_{d}=p+\frac{\rho}{2} w^{2}$
$\Delta p=\left(p_{s 1}+\frac{\rho}{2} w_{1}^{2}\right)-\left(p_{s 2}+\frac{\rho}{2} w_{2}^{2}\right)=p_{t 1}-p_{t 2}$

Pressure losses

$>$ by friction
$>$ local pressure losses
$\Delta p=\underbrace{\lambda \frac{I}{d} \frac{w^{2}}{2} \rho}_{\text {by friction }}+\underbrace{\sum \zeta \frac{w^{2}}{2} \rho}_{\text {local }}=R . I+Z \quad \lambda=4 f$
$\Delta p=\left(\lambda \frac{l}{d}+\sum \zeta\right) \frac{w^{2}}{2} \rho$

Note:

Friction losses

Laminar flow
$\lambda=\frac{64}{\mathrm{Re}}$
Turbulent flow
$\frac{1}{\sqrt{\lambda}}=-2 \log \left(\frac{\varepsilon / d}{3,71}+\frac{2,51}{\operatorname{Re} \sqrt{\lambda}}\right)$
Colebrook (1939)
sd - relative roughness
$\lambda=\frac{0,0812}{\operatorname{Re}^{0,125} d^{0,11}}$
Smolik (1959) for $\varepsilon=0,15$

Friction losses

Turbulent flow

$\lambda=\frac{0.3164}{\sqrt[4]{\mathrm{Re}}} \quad$| | for smooth pipes and duct (plastic) |
| :--- | :--- |
| $2300<\operatorname{Re}<10^{5}$ | |

Blasius equation

Friction losses

Roghness height of the conduit wall surfaces

Material	$\boldsymbol{\varepsilon}(\mathbf{m m})$
Galvanized steel	0.15
Concrete duct - smooth surface	0.5
Concrete duct - rough surface	$1.0-3.0$
Smooth brass, copper	0.015
Flexible duct - hose pipe	$0.6-3$
Plastic pipe	0.007

Friction losses

Hydraulic diameter
$d_{h}=\frac{4 A}{O}=\frac{4 a b}{2(a+b)}=\frac{2 a b}{a+b}$
Rectangular ducts
$\lambda=C \lambda_{d}$
$C=1.1-0.1 \frac{b}{a}$

Moody's diagram

Local pressure losses

Local pressure losses are caused by the fluid flow through the duct fittings:
$>$ which change the direction of the flow (elbows, bands, etc.)
$>$ affect the flow in the straight duct with constant cross-section (valves, stopcocks, filters etc.).
$\Delta p_{l}=\sum \zeta p_{d}=\sum \zeta \frac{w^{2}}{2} \rho$
$>\zeta$... local loss coefficient (experiments - see Idelchik 1986)
Borda loss prediction

Borda-Carnot equation

local pressure loss by expansion
$\Delta p=\zeta \frac{W_{1}{ }^{2}}{2} \rho=\left(1-\frac{A_{1}}{A_{2}}\right)^{2} \frac{W_{1}{ }^{2}}{2} \rho$

Duct design

Methods
$>$ velocity method ...!
equal-friction method
static regain method

Velocity method

Duct design procedure:

1) Find the main line

Rule no. 1: the main line is the maximum pressure loss line (longest line, most segment line (?))
2) Air flow rate $V\left(\mathrm{~m}^{3} / \mathrm{h}\right)$ in duct sections is known
3) Selection of the air velocity in the duct w

Rule no. 2: Air velocity increase towards the fan

Velocity method

	Air velocity w(m/s)			
	Main section		Side section	
Ventilation and low-pressure air- conditioning	recomend.	max.	recomend.	max.
- residential buildings	$3.5-5$	6	3	5
- public buildings	$5-7$	8	$3-4.5$	6.5
- industry	$6-9$	11	$4-5$	9
High-pressure air-conditioning	$8-12$	$15-20$	$8-10$	18

Velocity method

4) duct area $A\left(m^{2}\right) \rightarrow$ diameter d or $a \times b$

$$
d=\sqrt{\frac{4 V}{\pi W}}
$$

\rightarrow nominal diameter d_{N} or $a_{N} \times b_{N}$

Rule no. 3: Duct sizes: 80, 100, 125, 140, 160, 180, 200, 250, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000

Velocity method

5) $d_{N} \rightarrow$ real velocity $w_{\text {real }}$
$W_{\text {real }}=\frac{4 V}{\pi d_{N}^{2}}$
6) calculation of dynamic pressure p_{d}
7) Reynolds number \rightarrow friction coefficient λ
8) local loss coefficients ζ
9) pressure loss of the duct section $\Delta p_{z, i}$
$\Delta p_{i}=\left(\lambda \frac{I_{i}}{d_{N, i}}+\sum \zeta\right) \frac{w_{i}^{2}}{2} \rho$

Velocity method

Rule no. 4: Balancing
$\Delta p_{F}+\Delta p_{E}=\Delta p_{G}+\Delta p_{I}$
10) total pressure loss is the sum of the duct sections pressure losses
$\Delta p_{e x}=\sum \Delta p_{i}$

Velocity method

$\Delta p=\Delta p_{A}+\Delta p_{B}+\Delta p_{D}+\Delta p_{G}+\Delta p_{I}$
$\dot{V}=\dot{V}_{1}+\dot{V}_{2}+\dot{V}_{3}+\dot{V}_{4}+\dot{V}_{5}$

Fan and ductwork

Duct pressure loss

$\Delta p=\underbrace{\lambda \frac{l}{d} \frac{w^{2}}{2} \rho}_{\text {friction }}+\underbrace{\sum \zeta \frac{w^{2}}{2} \rho}_{\text {local }}=\left(\lambda \frac{l}{d}+\sum \zeta\right) \underbrace{\frac{w^{2}}{2} \rho}_{p_{d}}$
$\Delta p=\left(\lambda \frac{l}{d}+\sum \zeta\right)\left(\frac{V}{A}\right)^{2} \frac{\rho}{2}=\left(\lambda \frac{l}{d}+\sum \zeta\right)\left(\frac{4 V}{\pi d^{2}}\right)^{2} \frac{\rho}{2}=K V^{2}$
$K=\left(\lambda \frac{l}{d}+\sum \zeta\right) \frac{8 \rho}{\pi^{2} d^{4}}$
... parabolic relation

Fan and ductwork

Fan and ductwork

dynamic pressure
$p_{d}=\frac{w^{2}}{2} \rho \quad w=\frac{V}{S}=\frac{4 V}{\pi d^{2}}$
$>$ total pressure
$p_{t}=p_{s}+p_{d}$
total pressure difference across the fan
$\Delta p=p_{t 2}-p_{t 1}=\Delta p_{t 1}+\Delta p_{t 2}=\Delta p_{l 1}+\Delta p_{l 2}+p_{d 2}$

Fan and ductwork

Fan

Volume airflow rate $V\left[\mathrm{~m}^{3} / \mathrm{s}\right]$
$>$ volume of air, which is transferred by fan
$>$ performance data are based on dry air at standard conditions $101,325 \mathrm{kPa}$ and $20^{\circ} \mathrm{C} \rightarrow \rho=1,2 \mathrm{~kg} / \mathrm{m}^{3}$
Total pressure difference Δp [Pa$]$
$>$ the fan have to pass the system pressure losses (static pressure)
Electric power P [W]
$P=\frac{\dot{V} \Delta p}{\eta_{\text {tot }}}$

Fan

Specific fan power SFP [W/(m³/s)]
$S F P=\frac{P}{\dot{V}}=\frac{\Delta p}{\eta_{\text {tot }}}$
Energy consumption [kWh]
$E_{\text {tot }}=\int_{0}^{\tau} P d \tau=\sum_{0}^{n} P$
[kWh/year]
τ ... working time of the fan [hours/year]

Fan laws

$n=$ var.; $\rho=$ const. $\quad \rho=$ var.; $n=$ const

$V_{2}=V_{1} \frac{n_{2}}{n_{1}}$	$V_{2}=V_{1}$
$\Delta p_{2}=\Delta p_{1}\left(\frac{n_{2}}{n_{1}}\right)^{2}$	$\Delta p_{2}=\Delta p_{1} \frac{\rho_{2}}{\rho_{1}}$
$P_{2}=P_{1}\left(\frac{n_{2}}{n_{1}}\right)^{3}$	$P_{2}=P_{1} \frac{\rho_{2}}{\rho_{1}}$

Duct systems

Shapes
$>$ rectangular
round
flexible duct

Materials

$>$ steel galvanized
$>$ aluminium
$>$ plastic PVC
$>$ textile
> ALP

Duct systems

Duct leakage rate
$V=m \Delta p^{0.67} S_{v}$
where $S_{v} \quad$... duct surface [m^{2}]

Class	Charakteristics of the leakage path $m\left[\mathrm{~m}^{3} / \mathrm{s}\right.$ per $\left.\mathrm{m}^{2}\right]$
A	0.027×10^{-3}
B	0.009×10^{-3}
C	0.003×10^{-3}
D	0.001×10^{-3}

Thermal insulation

Purpose

condensation risk
heat losses/gains

Thickness of TI
$>$ indoor 45-60 mm
$>$ outdoor $80-100 \mathrm{~mm}$ (with sheet covering)

Example

Example 1: Dimension the air duct system. Use the velocity method. air velocity $w=6-10 \mathrm{~m} / \mathrm{s}$,

$$
\begin{aligned}
& V_{1}=9000 \mathrm{~m}^{3} / \mathrm{h} \\
& V_{2}=1440 \mathrm{~m}^{3} / \mathrm{h} \\
& V_{3}=2160 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

air density $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$,
kinematic viscosity $v=14.5 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$

Example

Example 1:

$$
\begin{aligned}
& \text { e 1: } \\
& D_{\text {calc }}=\sqrt{\frac{4 V}{\pi W}} \quad \Rightarrow \quad D_{N} \quad \Rightarrow w_{\text {real }}=\frac{4 V}{\pi D_{N}^{2}} \\
& \Rightarrow \operatorname{Re}=\frac{w_{\text {realt }} D_{N}}{v} \Rightarrow \lambda=\frac{0.0812}{\operatorname{Re}^{0.125} D_{N}^{0.11}} \\
& \Delta p_{f}=\lambda \frac{l}{D} \frac{w_{\text {real }}^{2}}{2} \rho \quad \Delta p_{l}=\sum \zeta \frac{w_{\text {real }}^{2}}{2} \rho \\
& \Delta p_{i}=\Delta p_{f}+\Delta p_{l}\left(+\Delta p_{\text {el }}\right)
\end{aligned}
$$

